
IPERF3(1) User Manuals IPERF3(1)

NAME
 iperf3 - perform network throughput tests

SYNOPSIS
 iperf3 -s [options]
 iperf3 -c server [options]

DESCRIPTION
 iperf3 is a tool for performing network throughput measurements. It
 can test TCP, UDP, or SCTP throughput. To perform an iperf3 test the
 user must establish both a server and a client.

 The iperf3 executable contains both client and server functionality.
 An iperf3 server can be started using either of the -s or --server
 command-line parameters, for example:

 iperf3 -s

 iperf3 --server

 Note that many iperf3 parameters have both short (-s) and long
 (--server) forms. In this section we will generally use the short form
 of command-line flags, unless only the long form of a flag is
 available.

 By default, the iperf3 server listens on TCP port 5201 for connections
 from an iperf3 client. A custom port can be specified by using the -p
 flag, for example:

 iperf3 -s -p 5002

 After the server is started, it will listen for connections from iperf3
 clients (in other words, the iperf3 program run in client mode). The
 client mode can be started using the -c command-line option, which also
 requires a host to which iperf3 should connect. The host can by
 specified by hostname, IPv4 literal, or IPv6 literal:

 iperf3 -c iperf3.example.com

 iperf3 -c 192.0.2.1

 iperf3 -c 2001:db8::1

 If the iperf3 server is running on a non-default TCP port, that port
 number needs to be specified on the client as well:

 iperf3 -c iperf3.example.com -p 5002

 The initial TCP connection is used to exchange test parameters, control
 the start and end of the test, and to exchange test results. This is
 sometimes referred to as the "control connection". The actual test
 data is sent over a separate TCP connection, as a separate flow of UDP
 packets, or as an independent SCTP connection, depending on what
 protocol was specified by the client.

 Normally, the test data is sent from the client to the server, and
 measures the upload speed of the client. Measuring the download speed
 from the server can be done by specifying the -R flag on the client.
 This causes data to be sent from the server to the client.

 iperf3 -c iperf3.example.com -p 5202 -R

 Results are displayed on both the client and server. There will be at
 least one line of output per measurement interval (by default a
 measurement interval lasts for one second, but this can be changed by
 the -i option). Each line of output includes (at least) the time since
 the start of the test, amount of data transferred during the interval,
 and the average bitrate over that interval. Note that the values for
 each measurement interval are taken from the point of view of the
 endpoint process emitting that output (in other words, the output on
 the client shows the measurement interval data for the client.

 At the end of the test is a set of statistics that shows (at least as
 much as possible) a summary of the test as seen by both the sender and
 the receiver, with lines tagged accordingly. Recall that by default
 the client is the sender and the server is the receiver, although as
 indicated above, use of the -R flag will reverse these roles.

 The client can be made to retrieve the server-side output for a given
 test by specifying the --get-server-output flag.

 Either the client or the server can produce its output in a JSON
 structure, useful for integration with other programs, by passing it
 the -J flag. Because the contents of the JSON structure are only
 completely known after the test has finished, no JSON output will be
 emitted until the end of the test.

 iperf3 has a (overly) large set of command-line options that can be
 used to set the parameters of a test. They are given in the "GENERAL
 OPTIONS" section of the manual page below, as well as summarized in
 iperf3's help output, which can be viewed by running iperf3 with the -h
 flag.

GENERAL OPTIONS
 -p, --port n

 set server port to listen on/connect to to n (default 5201)

 -f, --format
 [kmgtKMGT] format to report: Kbits/Mbits/Gbits/Tbits

 -i, --interval n
 pause n seconds between periodic throughput reports; default is
 1, use 0 to disable

 -I, --pidfile file
 write a file with the process ID, most useful when running as a
 daemon.

 -F, --file name
 Use a file as the source (on the sender) or sink (on the
 receiver) of data, rather than just generating random data or
 throwing it away. This feature is used for finding whether or
 not the storage subsystem is the bottleneck for file transfers.
 It does not turn iperf3 into a file transfer tool. The length,
 attributes, and in some cases contents of the received file may
 not match those of the original file.

 -A, --affinity n/n,m
 Set the CPU affinity, if possible (Linux, FreeBSD, and Windows
 only). On both the client and server you can set the local
 affinity by using the n form of this argument (where n is a CPU
 number). In addition, on the client side you can override the
 server's affinity for just that one test, using the n,m form of
 argument. Note that when using this feature, a process will
 only be bound to a single CPU (as opposed to a set containing
 potentially multiple CPUs).

 -B, --bind host[%dev]
 bind to the specific interface associated with address host. If
 an optional interface is specified, it is treated as a shortcut
 for --bind-dev dev. Note that a percent sign and interface
 device name are required for IPv6 link-local address literals.

 --bind-dev dev
 bind to the specified network interface. This option uses
 SO_BINDTODEVICE, and may require root permissions. (Available
 on Linux and possibly other systems.)

 -V, --verbose
 give more detailed output

 -J, --json
 output in JSON format

 --logfile file
 send output to a log file.

 --forceflush
 force flushing output at every interval. Used to avoid
 buffering when sending output to pipe.

 --timestamps[=format]
 prepend a timestamp at the start of each output line. By
 default, timestamps have the format emitted by ctime(1).
 Optionally, = followed by a format specification can be passed
 to customize the timestamps, see strftime(3). If this optional
 format is given, the = must immediately follow the --timestamps
 option with no whitespace intervening.

 --rcv-timeout #
 set idle timeout for receiving data during active tests. The
 receiver will halt a test if no data is received from the sender
 for this number of ms (default to 12000 ms, or 2 minutes).

 --snd-timeout #
 set timeout for unacknowledged TCP data (on both test and
 control connections) This option can be used to force a faster
 test timeout in case of a network partition during a test. The
 required parameter is specified in ms, and defaults to the
 system settings. This functionality depends on the
 TCP_USER_TIMEOUT socket option, and will not work on systems
 that do not support it.

 -d, --debug
 emit debugging output. Primarily (perhaps exclusively) of use
 to developers.

 -v, --version
 show version information and quit

 -h, --help
 show a help synopsis

SERVER SPECIFIC OPTIONS
 -s, --server

 run in server mode

 -D, --daemon
 run the server in background as a daemon

 -1, --one-off
 handle one client connection, then exit. If an idle time is
 set, the server will exit after that amount of time with no
 connection.

 --idle-timeout n
 restart the server after n seconds in case it gets stuck. In
 one-off mode, this is the number of seconds the server will wait
 before exiting.

 --server-bitrate-limit n[KMGT]
 set a limit on the server side, which will cause a test to abort
 if the client specifies a test of more than n bits per second,
 or if the average data sent or received by the client (including
 all data streams) is greater than n bits per second. The
 default limit is zero, which implies no limit. The interval
 over which to average the data rate is 5 seconds by default, but
 can be specified by adding a '/' and a number to the bitrate
 specifier.

 --rsa-private-key-path file
 path to the RSA private key (not password-protected) used to
 decrypt authentication credentials from the client (if built
 with OpenSSL support).

 --authorized-users-path file
 path to the configuration file containing authorized users
 credentials to run iperf tests (if built with OpenSSL support).
 The file is a comma separated list of usernames and password
 hashes; more information on the structure of the file can be
 found in the EXAMPLES section.

 --time-skew-thresholdsecond seconds
 time skew threshold (in seconds) between the server and client
 during the authentication process.

CLIENT SPECIFIC OPTIONS
 -c, --client host[%dev]

 run in client mode, connecting to the specified server. By
 default, a test consists of sending data from the client to the
 server, unless the -R flag is specified. If an optional
 interface is specified, it is treated as a shortcut for --bind-
 dev dev. Note that a percent sign and interface device name are
 required for IPv6 link-local address literals.

 --sctp use SCTP rather than TCP (FreeBSD and Linux)

 -u, --udp
 use UDP rather than TCP

 --connect-timeout n
 set timeout for establishing the initial control connection to
 the server, in milliseconds. The default behavior is the
 operating system's timeout for TCP connection establishment.
 Providing a shorter value may speed up detection of a down
 iperf3 server.

 -b, --bitrate n[KMGT]
 set target bitrate to n bits/sec (default 1 Mbit/sec for UDP,
 unlimited for TCP/SCTP). If there are multiple streams (-P
 flag), the throughput limit is applied separately to each
 stream. You can also add a '/' and a number to the bitrate
 specifier. This is called "burst mode". It will send the given
 number of packets without pausing, even if that temporarily
 exceeds the specified throughput limit. Setting the target
 bitrate to 0 will disable bitrate limits (particularly useful
 for UDP tests). This throughput limit is implemented internally
 inside iperf3, and is available on all platforms. Compare with
 the --fq-rate flag. This option replaces the --bandwidth flag,
 which is now deprecated but (at least for now) still accepted.

 --pacing-timer n[KMGT]
 set pacing timer interval in microseconds (default 1000
 microseconds, or 1 ms). This controls iperf3's internal pacing
 timer for the -b/--bitrate option. The timer fires at the
 interval set by this parameter. Smaller values of the pacing
 timer parameter smooth out the traffic emitted by iperf3, but
 potentially at the cost of performance due to more frequent
 timer processing.

 --fq-rate n[KMGT]
 Set a rate to be used with fair-queueing based socket-level
 pacing, in bits per second. This pacing (if specified) will be
 in addition to any pacing due to iperf3's internal throughput
 pacing (-b/--bitrate flag), and both can be specified for the
 same test. Only available on platforms supporting the
 SO_MAX_PACING_RATE socket option (currently only Linux). The
 default is no fair-queueing based pacing.

 --no-fq-socket-pacing
 This option is deprecated and will be removed. It is equivalent
 to specifying --fq-rate=0.

 -t, --time n
 time in seconds to transmit for (default 10 secs)

 -n, --bytes n[KMGT]
 number of bytes to transmit (instead of -t)

 -k, --blockcount n[KMGT]
 number of blocks (packets) to transmit (instead of -t or -n)

 -l, --length n[KMGT]
 length of buffer to read or write. For TCP tests, the default
 value is 128KB. In the case of UDP, iperf3 tries to dynamically
 determine a reasonable sending size based on the path MTU; if
 that cannot be determined it uses 1460 bytes as a sending size.
 For SCTP tests, the default size is 64KB.

 --cport port
 bind data streams to a specific client port (for TCP and UDP
 only, default is to use an ephemeral port)

 -P, --parallel n
 number of parallel client streams to run. iperf3 will spawn off
 a separate thread for each test stream. Using multiple streams
 may result in higher throughput than a single stream.

 -R, --reverse
 reverse the direction of a test, so that the server sends data
 to the client

 --bidir
 test in both directions (normal and reverse), with both the
 client and server sending and receiving data simultaneously

 -w, --window n[KMGT]
 set socket buffer size / window size. This value gets sent to
 the server and used on that side too; on both sides this option
 sets both the sending and receiving socket buffer sizes. This
 option can be used to set (indirectly) the maximum TCP window
 size. Note that on Linux systems, the effective maximum window
 size is approximately double what is specified by this option
 (this behavior is not a bug in iperf3 but a "feature" of the
 Linux kernel, as documented by tcp(7) and socket(7)).

 -M, --set-mss n
 set TCP/SCTP maximum segment size (MTU - 40 bytes)

 -N, --no-delay
 set TCP/SCTP no delay, disabling Nagle's Algorithm

 -4, --version4
 only use IPv4

 -6, --version6
 only use IPv6

 -S, --tos n
 set the IP type of service. The usual prefixes for octal and hex
 can be used, i.e. 52, 064 and 0x34 all specify the same value.

 --dscp dscp
 set the IP DSCP bits. Both numeric and symbolic values are
 accepted. Numeric values can be specified in decimal, octal and
 hex (see --tos above).

 -L, --flowlabel n
 set the IPv6 flow label (currently only supported on Linux)

 -X, --xbind name
 Bind SCTP associations to a specific subset of links using
 sctp_bindx(3). The --B flag will be ignored if this flag is
 specified. Normally SCTP will include the protocol addresses of
 all active links on the local host when setting up an
 association. Specifying at least one --X name will disable this
 behaviour. This flag must be specified for each link to be
 included in the association, and is supported for both iperf
 servers and clients (the latter are supported by passing the
 first --X argument to bind(2)). Hostnames are accepted as
 arguments and are resolved using getaddrinfo(3). If the --4 or
 --6 flags are specified, names which do not resolve to addresses
 within the specified protocol family will be ignored.

 --nstreams n
 Set number of SCTP streams.

 -Z, --zerocopy
 Use a "zero copy" method of sending data, such as sendfile(2),
 instead of the usual write(2).

 -O, --omit n
 Perform pre-test for N seconds and omit the pre-test statistics,
 to skip past the TCP slow-start period.

 -T, --title str
 Prefix every output line with this string.

 --extra-data str
 Specify an extra data string field to be included in JSON
 output.

 -C, --congestion algo
 Set the congestion control algorithm (Linux and FreeBSD only).
 An older --linux-congestion synonym for this flag is accepted
 but is deprecated.

 --get-server-output
 Get the output from the server. The output format is determined
 by the server (in particular, if the server was invoked with the
 --json flag, the output will be in JSON format, otherwise it
 will be in human-readable format). If the client is run with
 --json, the server output is included in a JSON object;
 otherwise it is appended at the bottom of the human-readable
 output.

 --udp-counters-64bit
 Use 64-bit counters in UDP test packets. The use of this option
 can help prevent counter overflows during long or high-bitrate
 UDP tests. Both client and server need to be running at least
 version 3.1 for this option to work. It may become the default
 behavior at some point in the future.

 --repeating-payload
 Use repeating pattern in payload, instead of random bytes. The
 same payload is used in iperf2 (ASCII '0..9' repeating). It
 might help to test and reveal problems in networking gear with
 hardware compression (including some WiFi access points), where
 iperf2 and iperf3 perform differently, just based on payload
 entropy.

 --dont-fragment
 Set the IPv4 Don't Fragment (DF) bit on outgoing packets. Only
 applicable to tests doing UDP over IPv4.

 --username username
 username to use for authentication to the iperf server (if built
 with OpenSSL support). The password will be prompted for
 interactively when the test is run. Note, the password to use
 can also be specified via the IPERF3_PASSWORD environment
 variable. If this variable is present, the password prompt will
 be skipped.

 --rsa-public-key-path file
 path to the RSA public key used to encrypt authentication
 credentials (if built with OpenSSL support)

EXAMPLES
 Authentication - RSA Keypair
 The authentication feature of iperf3 requires an RSA public keypair.
 The public key is used to encrypt the authentication token containing
 the user credentials, while the private key is used to decrypt the
 authentication token. The private key must be in PEM format and
 additionally must not have a password set. The public key must be in
 PEM format and use SubjectPrefixKeyInfo encoding. An example of a set
 of UNIX/Linux commands using OpenSSL to generate a correctly-formed
 keypair follows:

 > openssl genrsa -des3 -out private.pem 2048
 > openssl rsa -in private.pem -outform PEM -pubout -out public.pem
 > openssl rsa -in private.pem -out private_not_protected.pem
 -outform PEM

 After these commands, the public key will be contained in the file
 public.pem and the private key will be contained in the file
 private_not_protected.pem.

 Authentication - Authorized users configuration file
 A simple plaintext file must be provided to the iperf3 server in order
 to specify the authorized user credentials. The file is a simple list
 of comma-separated pairs of a username and a corresponding password
 hash. The password hash is a SHA256 hash of the string
 "{$user}$password". The file can also contain commented lines
 (starting with the # character). An example of commands to generate
 the password hash on a UNIX/Linux system is given below:

 > S_USER=mario S_PASSWD=rossi
 > echo -n "{S_USER}S_PASSWD" | sha256sum | awk '{ print $1 }'

 An example of a password file (with an entry corresponding to the above
 username and password) is given below:

 > cat credentials.csv
 # file format: username,sha256
 mario,bf7a49a846d44b454a5d11e7acfaf13d138bbe0b7483aa3e050879700572709b

AUTHORS
 A list of the contributors to iperf3 can be found within the
 documentation located at
 https://software.es.net/iperf/dev.html#authors.

SEE ALSO
 libiperf(3), https://software.es.net/iperf

ESnet November 2023 IPERF3(1)

